



## ЭТИКЕТКА

 $\frac{\text{УП3.487.313 ЭТ}}{\text{Микросхема интегральная 564 CA1B}}$ Функциональное назначение – 12-ти разрядная схема сравнения

Климатическое исполнение УХЛ Схема расположения выводов



Условное графическое обозначение



## Таблица назначения выводов

| №<br>вывода | Назначение вывода   | №<br>вывода | Назначение вывода           |
|-------------|---------------------|-------------|-----------------------------|
| 1           | Информационный вход | 9           | Выход                       |
| 2           | Информационный вход | 10          | Расширительный вход         |
| 3           | Информационный вход | 11          | Информационный вход         |
| 4           | Информационный вход | 12          | Информационный вход         |
| 5           | Информационный вход | 13          | Информационный вход         |
| 6           | Информационный вход | 14          | Информационный вход         |
| 7           | Информационный вход | 15          | Информационный вход         |
| 8           | Общий               | 16          | Питание, U <sub>u. n.</sub> |

# 1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

## 1.1 Основные электрические параметры (при $t = (25\pm10)$ °C)

## Таблица 1

| Havingapawa Tananaran a Turung Nahanawa nahan nahan ma                                                                                         | Буквенное           | Норма            |            |
|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------|------------|
| Наименование параметра, единица измерения, режим измерения                                                                                     | обозначение         | не менее         | не более   |
| 1                                                                                                                                              | 2                   | 3                | 4          |
| 1. Выходное напряжение высокого уровня, B, при: $U_{\rm CC} = 5~{\rm B}$ $U_{\rm CC} = 10~{\rm B}$                                             | U <sub>OH</sub>     | 4,99<br>9,99     | -          |
| 2. Выходное напряжение низкого уровня, B, при: $U_{CC} = 5$ B, $U_{CC} = 10$ B                                                                 | U <sub>OL</sub>     | -                | 0,01       |
| 3. Минимальное выходное напряжение высокого уровня, B, при: $U_{\rm CC}$ = 5 B, $U_{\rm IH}$ = 3,5 B $U_{\rm CC}$ = 10 B, $U_{\rm IH}$ = 7,0 B | $U_{OHmin}$         | 4,2<br>9,0       | -<br>-     |
| 4. Максимальное выходное напряжение низкого уровня, B, при: $U_{CC} = 5$ B, $U_{IL} = 1.5$ B $U_{CC} = 10$ B, $U_{IL} = 3.0$ B                 | U <sub>OL max</sub> | -<br>-           | 0,8<br>1,0 |
| 5. Выходной ток высокого уровня, мА, при: $U_{CC} = 5 \; B, \; U_O = 2,5 \; B$ $U_{CC} = 10 \; B, \; U_O = 9,5 \; B$                           | $ m I_{OH}$         | /-1,0/<br>/-1,0/ | -<br>-     |
| 6. Выходной ток низкого уровня, мА, при: $U_{CC} = 5 \; B, \; U_O = 0,4 \; B \\ U_{CC} = 10 \; B, \; U_O = 0,5 \; B$                           | $I_{OL}$            | 0,5<br>1,0       | -<br>-     |

| Продолжение таблицы 1                                                                                                                                                        |                   |             |                       |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------|-----------------------|--|
| 1                                                                                                                                                                            | 2                 | 3           | 4                     |  |
| 7. Ток потребления, мА, при: $U_{CC} = 5 \; B \\ U_{CC} = 10 \; B \\ U_{CC} = 15 \; B$                                                                                       | $I_{CC}$          | -<br>-<br>- | 0,005<br>0,01<br>0,02 |  |
| 8. Входной ток высокого уровня, мк $A$ , при: $U_{CC} = 15~B$                                                                                                                | $I_{\mathrm{IH}}$ | -           | 0,1                   |  |
| 9. Входной ток низкого уровня, мк $A$ , при: $U_{CC}$ = 15 $B$                                                                                                               | $I_{IL}$          | -           | /-0,1/                |  |
| 10. Время задержки распространения сигнала при включении (информационный вход $1-7$ , $11-15$ ), нС, при: $U_{CC}=5$ В, $C_L=50$ пФ $U_{CC}=10$ В, $C_L=50$ пФ               | $t_{ m PHL}$      | -<br>-      | 800<br>400            |  |
| 11. Время задержки распространения сигнала при включении (расширительный вход 10), нС, при: $U_{CC} = 5 \; B, \; C_L = 50 \; n\Phi$ $U_{CC} = 10 \; B, \; C_L = 50 \; n\Phi$ | $t_{ m PHL}$      | -           | 500<br>250            |  |
| 12. Время задержки распространения сигнала при выключении (информационный вход $1-7$ , $11-15$ ), нС, при: $U_{CC}=5$ B, $C_L=50$ пФ $U_{CC}=10$ B, $C_L=50$ пФ              | $t_{PLH}$         | -<br>-      | 800<br>400            |  |
| 13. Время задержки распространения сигнала при выключении (расширительный вход 10), нС, при: $U_{CC}=5~B,~C_L=50~\pi\Phi$ $U_{CC}=10~B,~C_L=50~\pi\Phi$                      | t <sub>PLH</sub>  | -           | 500<br>250            |  |
| 14. Время перехода при выключении, нС, при: $U_{CC}=5~B,~C_L=50~\pi\Phi$ $U_{CC}=10~B,~C_L=50~\pi\Phi$                                                                       | t <sub>TLH</sub>  | -           | 400<br>180            |  |
| 15. Время перехода при включении, нС, при: $U_{CC} = 5 \; B, \; C_L = 50 \; \pi \Phi$ $U_{CC} = 10 \; B, \; C_L = 50 \; \pi \Phi$                                            | t <sub>THL</sub>  | -<br>-      | 400<br>180            |  |

1.2 Содержание драгоценных металлов в 1000 шт. микросхем:

золото г, серебро г, в том числе: г/мм на 16 выводах, длиной мм.

Цветных металлов не содержится.

- 2 НАДЕЖНОСТЬ
- $2.1\,$  Минимальная наработка (Тнм) микросхем в режимах и условиях эксплуатации, допускаемых стандартом ОСТ В  $11\,0398-2000\,$  и ТУ, при температуре окружающей среды (температуре эксплуатации) не более  $65\,^{\circ}$  С не менее  $100000\,$  ч., а в облегченных режимах, которые приводят в ТУ, при  $U_{CC}=5B\pm10\%$  не менее  $120000\,$  ч.

 $\Gamma$ амма – процентный ресурс  $(T_{p\gamma})$  микросхем устанавливают в ТУ при  $\gamma = 95\%$  и приводят в разделе "Справочные данные" ТУ.

2.2 Минимальный срок сохранаемости микросхем (T <sub>см</sub>) при их хранении в отапливаемом хранилище или в хранилище с регулируемыми влажностью и температурой или местах хранения микросхем, вмонтированных в защищенную аппаратуру, или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Минимальный срок сохраняемости микросхем в условиях, отличающихся от указанных,- в соответствии с разделом 4 ОСТ В 11 0398 – 2000.

- 2.3 Срок сохраняемости исчисляют с даты изготовления, указанной на микросхеме.
- 3 ГАРАНТИИ ПРЕДПРИЯТИЯ ИЗГОТОВИТЕЛЯ
- 3.1 Гарантии предприятия изготовителя по ОСТ В 11 0398 2000:

Предприятие-изготовитель гарантирует соответствие поставляемой микросхемы всем требованиям ТУ в течение срока сохраняемости и минимальной наработки в пределах срока сохраняемости при соблюдении потребителем режимов и условий эксплуатации, правил хранения и транспортирования, а также указаний по применению, установленных ТУ.

Срок гарантии исчисляют с даты изготовления, нанесенной на микросхеме.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 564 CA1B соответствуют техническим условиям бК0.347.064 ТУ 22 и признаны годными для эксплуатации.

| Приняты по                                 |                        | от _ |        |                     |
|--------------------------------------------|------------------------|------|--------|---------------------|
|                                            | (извещение, акт и др.) |      | (дата) |                     |
| Место для шт                               | гампа ОТК              |      |        | Место для штампа ВП |
| Место для штампа «Перепроверка произведена |                        |      | едена  |                     |
| Приняты по                                 |                        | от   |        | (A3-3)              |
|                                            | (извещение, акт и др.) | _    | (дата) | _                   |
| Место для шт                               | гампа ОТК              |      |        | Место для штампа ВП |

#### Цена договорная

- 5 УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ
- 5.1 При работе с микросхемами и монтаже их в аппаратуру должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 500 В. Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход общая точка, выход общая точка.

Остальные указания по применению и эксплуатации – в соответствии с бК0.347.064 ТУ/02.